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THE NUMERICAL INVERSION OF FUNCTIONS FROM THE 
PLANE TO THE PLANE 

IACI MALTA, NICOLAU C. SALDANHA, AND CARLOS TOMEI 

ABSTRACT. This paper contains a description of a program designed to find 
all the solutions of systems of two real equations in two real unknowns which 
uses detailed information about the critical set of the associated function from 
the plane to the plane. It turns out that the critical set and its image are 
highly structured, and this is employed in their numerical computation. The 
conceptual background and details of implementation are presented. The most 
important features of the program are the ability to provide global information 
about the function and the robustness derived from such topological informa- 
tion. 

INTRODUCTION 

In this paper, we describe a theoretical framework, and a program based there- 
upon, designed to solve systems of two real equations in two real unknowns, 

(1) F(x) = a, x, a E 22, 

for nice functions F, i.e., generic proper smooth functions with bounded critical set 
in a sense to be made precise in ?1. The program is reasonably fast, but its most 
important features are the ability to provide global information about the function 
and the robustness derived from such topological information. Most of the program 
consists in computing the critical set C of F: as we shall see, the sets C and F(C) 
are highly structured. In particular, the number of solutions of (1) is determined 
from knowledge of C and F(C). With F(C) available, the situation is perfect for the 
use of continuation methods, as will be seen in ?3. We thus need criteria to decide 
if a computed collection C. of critical curves may possibly be the entire critical set, 
in which case we may safely begin the inversion procedure. An application of the 
inversion algorithm is the computation of the set Y = F-1(F(C)), the flower of F, 
from which one obtains visual understanding of the function. 

We make extensive use of standard techniques in nonlinear numerical analy- 
sis: excellent references are [1] and [6]. The additional structure of our problems, 
however, allows our algorithm to be more complete than general equation-solving 
procedures, such as global Newton methods ([5]). On the other hand, unlike solving 
complex polynomial systems ([10]), our problems are not amenable to an algebraic 
approach. We assume as given routines which return the values of F and its first 
derivatives at any given point, which is obviously insufficient for any algorithm to 
fully and reliably solve our problems. Throughout the paper, we indicate some of 
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the steps where further, a priori knowledge of F would be necessary to guarantee 
faultless performance of the suggested algorithms. 

In ?1, we list the conditions satisfied by the critical set C and its image F(C). 
The simplest are counting relations, given in Proposition 1.3, which play the role of 
the Riemann-Hurwitz theorem in our context. Then, in Theorem 1.6, we present a 
combinatorial word criterion which allows us to decide if a given set C. is indeed 
the critical set of a nice function with specified behavior in its neighborhood. The 
criterion relies on previous work by Blank and Troyer (Theorem 1.4; see [11] and 
[13]) on immersions of disks with holes in the plane. 

In ?2, we discuss the computation of the critical set. In a nutshell, the program 
verifies if the conditions above are satisfied by the set C.. If counting relations, 
which are easier to check, are satisfied, the program checks the word criterion. A 
convenient feature of both kinds of conditions is that, if they are not satisfied, 
they indicate where to search for another critical curve. The counting relations are 
rather stringent: a set C. which satisfies them almost always complies with the 
word criterion. 

In ?3, we describe the algorithm employed to solve (1), given C and F(C). We 
begin by computing all pre-images of one point po somewhat removed from F(C). 
For other arbitrary points p, we obtain a convenient path joining po to p and perform 
inversion by continuation along the path. Notice that we know exactly where and 
how regular continuation breaks down. 

In the last section, we provide a collection of examples. For a somewhat compli- 
cated function, the program computed its critical set C and then inverted a random 
collection of points scattered over a region containing parts of F(C): this rather 
hard inversion problem turned out to be less than six times slower than the far 
easier problem of inverting another sample of points in a very regular region of the 
image of the same function. In another run, starting from an incomplete C., the 
program, after checking counting relations, searched for additional critical curves 
until the whole set C had been found. Next, we illustrate the use of the flower to 
understand the global behavior of two simple functions. Another example shows 
that the program performs well when asked to invert points close to the images of 
folds or cusps. Finally, we consider a far more complicated function, with critical 
set consisting of 17 curves, and show that again inversion works well for nontrivial 
points. 

1. GEOMETRY OF NICE FUNCTIONS 

The global geometry of a nice function F from the plane to itself is described 
in this section by making use of its critical sets C and F(C) and of the pre-image 
F = F-1(F(C)). Theorem 1.6 is a necessary and sufficient condition for a known 
set of critical curves C. of F to be the full critical set of a nice function coinciding 
with F in a neighborhood of C.. 

We begin with some definitions, most of them standard. A continuous function 
F from the plane to itself is proper if the pre-image of any compact set in the plane 
is compact. A point in the domain of a differentiable function F is regular if the 
derivative DF at this point is invertible, and critical otherwise. The image of the 
set C of critical points is the set F(C) of critical values; its complement in the 
plane is the set of regular values. Smooth proper functions F have a topological 
degree deg(F) (see [9]): the number of pre-images of a regular value counted with 
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the sign of the determinant of the Jacobian at each pre-image. A critical point x 
of F is a fold point (resp., a cusp point) if there are local orientation-preserving 
diffeomorphisms around x and F(x) onto neighborhoods of the origin of the plane 
in which F takes the form (2) (resp. (3)) below: 

(2) F(u, v) = (u, v2), 

(3) F(u, v) = (u, av3- uv), a = +1. 

By a celebrated theorem of Whitney ([14]), in an appropriate topology, generic 
functions only have folds and cusps as critical points. A point of F(C) is an 
intersection point if it has more than one critical pre-image. A transversal double 
point is an intersection point with exactly two critical pre-images, both of which 
are folds, and such that the tangent lines to the images of neighborhoods in C of 
the folds are distinct. Generically, smooth functions from the plane to the plane 
only have transversal double intersection points. 

In this paper, we only consider nice functions F, defined by the requirements 
below. 

(a) F is a smooth proper function from the plane into itself. 
(b) The critical set C of F is bounded and each critical point is either a fold or 

a cusp. 
(c) F only has transversal double intersection points. 

For a nice F, C = U -y is a finite disjoint union of simple closed regular curves -yi 
with finitely many cusps. Also, except for images of cusps, F(-yi) is a smooth curve 
in the plane. Finally, deg(F) =& 0 and, in a neighborhood of infinity, a nice function 
F behaves topologically like the function z -* zn for n = deg(F) > 0 or z l-* >n for 
n = - deg(F) > 0, in complex notation. 

We define the sense of folding of the critical curve -y in the domain to be the 
orientation which leaves neighboring points p with det(DF(p)) > 0 to the left of 
-y. This induces by F an orientation on F(-y), likewise called the sense of folding 
of F(-y), with the following property: the image of a small neighborhood of a fold 
point p E 'y lies entirely to the left of F('y). For a critical curve, the sense of folding 
corresponds to the positive (counterclockwise) orientation if and only if det(DF) is 
positive (immediately) inside the curve. 

Let -y be a critical curve of a nice function F, bounding an open disk D. A cusp 
point x E -y will be called inward if, for each sufficiently small neighborhood Ux of 
x, F-1(F('y)) n Ux is contained in D; otherwise, it will be called outward. From 
the local form, x is inward if and only if a det(DF)IuonD > 0. 

Given a nice function F, suppose we know 

(1) a set C. of critical curves, 
(2) their images, F(C.), 
(3) the cusps in C., together with their classification as inward or outward, 
(4) the sense of folding on each curve in F(C.), 
(5) the value of deg(F). 

The question we address is: is C = C.? In terms of these data, the best that 
can be done is to provide, as in Theorem 1.6, necessary and sufficient conditions for 
the existence of a nice function F. with the following properties: F. has the same 
topological degree as F, its critical set is C., and it coincides with F in an open 
neighborhood of C.. 
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The next two propositions build up towards the first set of necessary conditions, 
given in Proposition 1.3. Any (open) connected component of the set of regular 
values of a nice function F will be called a tile for F(C). PRom properness and 
the fact that F is a local homeomorphism outside the critical set, the number of 
solutions of F(x) = a is constant for a in a tile for F(C). 

Proposition 1.1. Any nice function F is surjective. If T is a tile for F(C) and 
S is the pre-image of T, then F: S -+ T is a finite covering. Moreover, if Too is 
the unbounded tile, then F-1(T,,) is the unbounded component of the complement 
of F-1(F(C)), and the number of pre-images of a point in Too equals the absolute 
value of the degree of F. 

The following proposition allows us to count pre-images of regular values (see [8] 
for pre-images of critical values). 

Proposition 1.2. Let T1 and Tr be tiles to the left and right of a small arc in F(C) 
with no double points and oriented by sense of folding. Then the points in T1 have 
two more pre-images then those in Tr. 

For each critical curve -y, we assign an integer v(y) given by the turning of the 
curve F(y) equipped with the orientation induced by the sense of folding. We recall 
the definition of the turning number T(f) of a continuous, locally injective function 
f : M -* R2, where M is homeomorphic to S1 and oriented. Let g : S1 M be 
an orientation-preserving homeomorphism. Then r(f) is the topological degree of 
the map 0 F-+ ((f og)(0+6) - (f og)(0))/|(f og)(0+6) - (f og)(0)|, where 0 E S1 
and 6 is any sufficiently small positive angle so that (f o )1 [g),+5] is invective for all 
0 E Si (see, e.g., [3]). So, for instance, if f : S1 -* JR2 is smooth, with f'(0) 78 0, 
for all 0 E S1, then r(f) is the topological degree of 0 F-- f'(0)/!f'(0)I. Also, for a 
continuous locally invective function f : M -, R2, where M is a disjoint finite union 
of oriented simple closed curves, define r(f) to be the sum of the turning numbers 
of the restrictions of f to the connected components of M. We now define v(y) as 
the turning number T(f), where f is the restriction of F to the critical curve -y, 
and 'y is oriented by the sense of folding. If Y = Ui yi, set v(Y) =.Ei v(-yi). As 
usual, the winding of f around a point a E R2 - f (M) is the topological degree of 
the map 0 F-- ((f o g)(0) -a)/I (f o g) (0) -a . Also, set k* (Qy) = number of outward 
cusps in -y and k* (-y) = number of inward cusps in y. 

Proposition 1.3. Let F be a nice function having k cusp points in C. Then 

Jdeg(F)j = k-2v(C) + 1. 

For a connected component of R2 _ C, with exterior bounding curve yo (if any) and 
interior bounding curves `Y1,... ,`Yh (again, if any), there holds 

h 

v(-yo) = 1 + k*(Qyo) + Z(k*(-yi) - v(yi) -1) 
i=1 

If there is no exterior bounding curve, the left-hand side has to be interpreted as 

] deg(F)f. 

We will refer to these identities as counting relations. As an example, consider 
the function 

- 2y2 + Xy + 4 - 254 3 2 2 1 
3 4_ F(x, y) =(-6x - 6x y +xy 6y x-x2-x +x y+xy +? 6xy -y-y). 
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The sets C, F(C) and F-1(F(C)) are sketched in Figure 1.1. From Proposition 
1.3, J deg(F)J = 5 - 2 2 + 1 = 2 and the annulus at infinity in the domain is an 
orientation-reversing double cover of the annulus at infinity in the image. From 
Propositions 1.1 and 1.2, the number of pre-images of regular points is as indicated 
in the figure. Let us check the counting relations in this example: for the bounded 
connected component of R2 - C, we have v(-yo) = 2 and k (-yo) = 1 (-yo being the 
only critical curve), in agreement with the formula. For the unbounded component, 
2 = I deg(F)l = I + (4-2-1) = I + (k*(-y)-v(^) - 

On our way to Theorem 1.6, we describe the Blank-Troyer theory ([11], [13]), 
which addresses the following problem. Let A be a disk with k holes in the plane and 
f: DA -* R2 be a smooth generic immersion (the precise requirements are described 
in [7]): when is it possible to extend f to an orientation-preserving immersion 
F:A-R I2? 

Orient the outer boundary ao of A positively and the inner boundaries a,.... , ak 

negatively. A ray is a proper embedding r: [0, +oo) - R2 which is transversal to 
f (&A) and never goes through an intersection point of f (&9A). The images of rays, 
oriented by the given parametrization, are also called rays. A system of rays for f 
is a finite family of disjoint rays with the following properties: 

o the origin of each ray is in some bounded component of JR2 _ f (-A), 
o each bounded component of JR2 - f (&A) contains the origin of a unique ray. 

Intersections between rays and f (&A) are labelled positively if the curve crosses 
the ray from right to left and negatively otherwise. Each intersection also receives a 
height index: the number of intersections in the same ray which are strictly closer to 
its origin. The Blank word wi for f (ai) is constructed by following the orientation 
of f (ai) and collecting intersections with the rays, keeping track of rays, signs and 
height indices: it is defined only up to cyclic permutation. 

In Figure 1.2, where k = 1, we illustrate a system of rays for which the Blank 
words are 

WO = aj+e f 

0= c0 d0e fo 

subscripts indicate height indices. 
Suppose the words wi and wj have letters z+ and z- with n < m, so that the 

two intersections are on the same ray and the one with negative label is closer to 
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FIGURE 1.3 

the origin of the ray. In order to obtain a positive concatenation of wi and wj, begin 

by cyclically permuting wi (resp. wj) to make z+ (resp. z-) its last (resp. first) 
letter, then, juxtapose both words and eliminate the pair z+ zn. Similarly, a word 

I m ( 

admits a positive -simplification if there exists a pair z+, Zn with n < m, such that 

(after a cyclic permutation if necessary) there are no letters with negative exponent 
between z+ and zn . In this case, the simplified word is obtained by eliminating the 

subword z+ . .. z- (or zn . .. z+ ). Finally, the Blank words wo, wi, . ,Wk admit a 

positive grouping if a sequence of positive concatenations and simplifications leads 

to a single word with no negative indices. 

Back to Figure 1.2, the Blank words admit a positive grouping: 

/ I 

Coo /)b+c+d+e+ fe2 + 1 2 . 

Theorem 1.4 (Moyer [13]). Let A be a k-holed di-sk, f : OA R 22 be a generic 
immersion and consider a -system of rays for f. Then there is an extension of f to 
an orientation-pre-serving immersion F : A -* R 2 if and only if 

(a) the turning number of f equals 1- k, 
(b) the Blank words two ,.._. v Wk admit a positive grouping. 

Figure 1.3 should give an idea of how concatenations and simplifications can be 
used to build immersions: botrds and in the domain and image according to the 

grouping so as to split A into disks in which the immersion is obvious. Conversely, 
given an immersion, inverse images of rays induce a positive grouping. 



NUMERICAL INVERSION OF FUNCTIONS FROM THE PLANE TO THE PLANE 1537 

Let us now state the analogue of Troyer's theorem for an unbounded region 
A,, whose boundary consists of k smooth simple closed negatively oriented curves 

, * * *, ciak (for proofs and more general regions, see [7]). The notion of topological 
degree naturally extends to a proper continuous function F: AOO- )R2: count, 
with sign, pre-images of a sufficiently remote regular value. Let f &AAO -) R2 
be a generic immersion. In this context the natural question is: given n, can we 
extend f to a proper immersion F: AO- JR2 with deg(F) = n? 

We need one extra ingredient, the word at infinity, which plays the role of the 
word for the (now nonexistent) exterior boundary. Draw a system of rays as pre- 
viously discussed. Construct the word at infinity wOO by taking the letters cor- 
responding to the rays, running through them counterclockwise as they arrive at 
infinity, each letter being assigned a positive label and a height index equal to 
infinity, and finally repeating the pattern InJ times. 

Corollary 1.5 [7]. Let A,, be as above, f: &AA -) R2 be a generic immer- 
sion and consider a system of rays for f. Then there is an extension of f to an 
orientation-preserving proper immersion F: AO )? R2 with deg(F) = n if and 
only if 

(a) the turning number of f equals 1 - n -k, 
(b) the words wO , w1, .. ., Wk group positively. 

As an example of this result, take A0O to be the region outside a, in Figure 1.2 
with the same f, now restricted to a, . A system of rays consists of rays c, d, e and 
f and, for n = 2, 

woo = c+ d+ e+ f+C+ d+ e+ + 

The words group essentially as before. In fact, AOO and the new immersion F are 
obtained from the previous example by "pushing ao to infinity". 

We are now ready to describe the criterion used by the program to decide if a 
given set C. of critical curves of the nice function F under study may be its full 
critical set. 

We want to apply Theorem 1.4 or Corollary 1.5 to each connected component 
R of JR2 - C.. The only difficulty is the presence of cusps, which we shall handle 
(following [3]) by applying the above results to sets A, obtained from each R by 
removing thin tubular neighborhoods of its boundary components. 

The topological properties of the image under F of a boundary curve ai of A 
are obtained from the nearby critical curve -yj in the boundary of R by taking into 
account the sense of folding of F together with the position and type of the cusps. 
From the normal form of cusps, inward cusps on -yo (the outer boundary of R) create 
small negatively oriented loops in F(ao); outward cusps, on the other hand, have 
no such effect. For the other boundary components of R, inner cusps are ineffective 
and outer cusps again give rise to negatively oriented loops. We call inward cusps 
on the outer boundary (of R) and outward cusps on inner boundaries relevant inside 
R. In Figure 1.4, for example, the critical curve 'Yj has three outward cusps: if R 
is the annulus, A and F(QA) are as indicated. 

In Figure 1.4, the complements of the curves F(yi) and F(al) are rather similar: 
there is one more connected component associated with each relevant cusp in -Y1. 
This indicates how to obtain the turning numbers and Blank words for Fl&A using 
only FlaR: there is no need to consider A explicitly. As for turnings, we have 
v(ai) = v(-yi) - k, where k is the number of relevant cusps (in R) on -yi. A system 
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ea 

FIGURE 1.4 

of rays for A consists of rays starting from each connected component of R2 - F(&R) 
that do not intersect F(QR) at cusps together with rays starting from each relevant 
cusp. Intersections between rays and F(aA) occur near intersections with F(QR) 
and there is one negatively labelled intersection near the origin of each ray starting 
at a cusp. Height indices are now easily obtained, as are Blank words for the oai's. 
In Figure 1.4, we illustrate this construction: Blank words are the same as in Figure 
1.2. 

Then let C. be a set of critical curves of F and R1, . .. , R,, R," be the connected 
components of R2 - C.. Each Re has exterior boundary -yo, and interior boundaries 
Y[e,i],... , Y[e,n,] and R, is the unbounded component with (interior) boundaries 

'Y[ool] v ***XY[oon.]* Also, let ke be the number of relevant cusps inside Re, i.e., ke 
k* (y[e,o]) + ,1 k* (-yej]) for = 1,= . . ., m and kco = n-> k* (-y[0,j]). Consider 
finally for each connected component Ri of R 2 - C. a system of rays (for Ai, 
obtained from Ri by removing a tubular neighborhood of the boundary) and the 
corresponding Blank words. 

An obvious necessary condition for C = C. is as follows. For each ?, f = 1, ... , 
det(DF) must have constant sign in Re: in particular, the signs of det(DF) imme- 
diately inside of Re next to each boundary component y[e,jj have to be equal. When 
this happens, we say signs in Re are coherent. For the unbounded component, signs 
are coherent if the above signs coincide with that of deg(F). 

Theorem 1.6. Let F be a nice function, C., Re and a system of rays as above. 
Then C. is the critical set of some nice function F. which agrees with F in a 
neighborhood of C. and such that deg(F.) deg(F) if and only if: 

(a) For f = 1, ... , m, oc, signs in Re are coherent. 
(b) ket- v(y[eo]) -_ En-1 v(_y[ej]) - ne + 1 = 0 for e = 1,... ,m, and ko - 

Z7:, v(7y[,j]) - no + I = deg(F)I (counting relations). 
(c) For each t = 1,... , m, the Blank words of Re group positively; similarly, the 

Blank words of Ro, and the word at infinity group positively (word criteria). 

Proof. Let us first see that if F. exists, then the items above hold. Indeed, (a) is 
trivial. Let Ae C Re be constructed as above. Notice that F. is an immersion when 
restricted to Ae. Conditions (b) and (c) follow from items (a) and (b) of Theorem 
1.4 or Corollary 1.5. 

Let us now consider the other implication: given that items (a), (b) and (c) 
hold, we must construct F.. Again, let Ae be as above. Theorem 1.4, possibly after 
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reversing orientation in the domain, tells us that there exists an immersion coincid- 
ing with F on &Ae. Similarly, apply Corollary 1.5 to the unbounded component to 
obtain an immersion with topological degree deg(F). The function obtained from 
juxtaposing these immersions satisfies all the requested conditions for F., except for 
the fact that it may be nonsmooth along the auxiliary curves in &Ae. The function 
can be smoothed out in order to obtain the desired F. by classical methods. El 

Failure of one of the three conditions ascertains the existence of an additional 
critical curve in the connected component R being treated. If all conditions are 
satisfied, it is logically possible, from our knowledge of F (i.e., the behavior of F 
near C. and at infinity), that C. is the full critical set of F. It is not clear, however, 
that this is actually the case. The problem is already present in the one-dimensional 
case: how can we be sure, given a function from the line to itself, that we know all 
its zeros? Implicitly, we assume the knowledge of a priori estimates which guarantee 
that there are no zeros outside the set being scanned and that, within this set, the 
function does not oscillate enough to generate additional zeros. 

We provide two nontrivial examples in which the set of critical curves is not 
found completely, despite the fulfillment by C. of the conditions above. In Figure 
1.5, the knowledge of the critical curve tyo and of deg(F) = 2 is not enough to 
decide whether there are additional critical curves. Indeed, if /3 is a simple closed 
curve surrounding F(-yi) and F(-y2) (the images of the undetected critical curves) 
its pre-image contains a simple closed curve /3 surrounding 'Y1 and -y2, as in the 
figure. If the search for critical curves never probes inside the disk D bounded by 
/3, there will be no reason to expect additional critical curves: clearly, there is a nice 
function F. which coincides with F outside D and is a diffeomorphism inside it. 
On the other hand, we could have found only -yl, which again gives us no indication 
of the existence of other critical curves, despite the fact that 'Y1 is in many senses 
different from -yo: for instance, points surrounded by F(Qyo) have four pre-images 
while points surrounded by F(-yi) have six. 

There is a characterization analogous to Theorem 1.6 for the critical sets of 
generic proper Whitney functions whose critical set is unbounded (see [7]). Else- 
where, we intend to consider the extension of this result, and the related numerical 
analysis, to functions on bounded domains and, by triangulation, on arbitrary sur- 
faces. 
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2. COMPUTATION OF THE CRITICAL SET 

We describe how the program computes the critical set of a nice function F, 
given F and its first partial derivatives. The program is not meant to be optimally 
fast: we are mainly concerned with the reliability of the results and the stability 
of the algorithms. Many of the intermediate steps perform rather nonstandard 
numerical tasks in ways which are new to us, and may well be open to substantial 
improvement. Good performance is dependent on the choice of additional data 
kept in order to avoid repetitive searches. For example, bimonotonic arcs, described 
below, turned out to be very convenient for routines computing winding numbers, 
intersections of curves, or finding the nearest computed critical point in the tf' norm 
to a given point. The use of memory is also not meant to be optimal: the amount 
employed is generous but not overwhelming. Relatively complicated executions of 
the program never used more than 2 Mbytes. We split the program in a series of 
steps. 

Step 0: Study of the behavior at infinity. The program computes the image 
of a large circle M centered at the origin. This may indicate if the function is not 
proper or has unbounded critical set, which is taken to be an error: the program 
expects functions to be nice. If the function is indeed nice, we obtain its degree as 
being the winding number of FIM around the origin. The computation of winding 
numbers is described in step 3. Of course, the appropriate size of M depends on 
a priori knowledge of F; for instance, it would suffice for M to enclose all the 
pre-images of 0 under F. 

Step 1: A first search for critical curves. The program computes det(DF), 
the determinant of the Jacobian of F, at points in a rectangular grid. The grid 
is specified by adjustable parameters: it is regular near the origin, and sparser 
far from it. When two consecutive evaluations of det(DF) have opposite signs, a 
routine computes one critical point (i.e., a root of det(DF)) in the segment between 
both grid points. Another routine then obtains a list of points in that critical curve 
by a continuation method with variable step. Simultaneously, the program checks 
that the critical curve being computed consists of regular points of det(DF). This 
critical curve probably crosses a number of segments of the grid, and those are 
marked to avoid repetitions in the search for other critical curves. Once the curve 
is complete, the program goes back to scanning the grid. At the end of this step, 
the program has found and computed some critical curves, giving rise to a set C.. 

Step 2: Marking relevant points in the critical curves. For each known 
critical curve in the domain, we compute its image and then identify some special 
points. By comparing neighboring points, we obtain the local extrema for the x- 
and y-coordinates, both in the list of points in the domain and the image. The curve 
then splits in a succession of bimonotonic arcs: they are maximal segments of the 
curve which are monotonic in each coordinate. We also obtain minimal enclosing 
rectangles with sides parallel to the coordinate axes bounding the critical curves 
and their images. 

We also search for candidate neighbors to a cusp, consecutive points p, q and r, 
by looking for sudden changes of direction between the vectors F(p) - F(q) and 
F(q) - F(r). Another routine then performs the accurate analysis of that arc of 
critical curve. Its final outcome is a refined positioning of the cusp (if there is one), 
together with two neighbors, one on each side, which are closer to the cusp than the 
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typical step size in this region, but which are not so close as to make their images 
undistinguishable within machine precision. 

Computing cusps accurately: We compute the approximate directions indicated 
in Figure 2.1. The cusp is then the extremum of the suggested function from the 
line to itself: we are left with the known problem ([4], [2]) of finding the maximum 
of a real-valued function without using its derivative. New neighbors to the cusp 
are computed separately. By evaluating the function at points near a cusp, one 
assigns a binary flag indicating if the cusp is inward or outward. 

We also compute intersection points of curves (actually, this is done only after 
the computed critical curves have successfully passed the test associated with the 
counting restrictions to be described in step 4). By hypothesis, the critical curves 
are disjoint, but their images can meet. In particular, one should also look for 
points of self-intersection. 

Looking for intersections: Given two images of (possibly equal) critical curves, 
we first check if their enclosing rectangles meet: it is enough to study the case when 
this happens. We then consider two bimonotonic arcs, one for each curve: if their 
enclosing rectangles do not meet, the arcs do not either. In the relevant case, their 
slopes may have opposite (a) or equal (b) signs, as indicated in Figure 2.2. In case 
(a), a binary search obtains the only intersection point (if it exists). In case (b), 
the intersection points are obtained by the algorithm suggested in the picture. 

At this point, we know rough approximations of intersections, given by the in- 
tersections of the polygonals induced by the lists of points. These can be refined, 
but we do not use Newton's method because that would require knowledge of sec- 
ond derivatives of F. Instead, from four points ao, bo, co and do in the domain 
approximating the intersection, we obtain (by a method similar to regula falsa) 
points ai, bi, cl and d, in a similar configuration, giving a better approximation. 
Iterating this procedure, however, we have to be able to recognize the two nasty 
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situations in Figure 2.3. In the first situation the intersection is not in the interior 
of the arcs a0bo and codo and we must find a new set of four points which is better 
for topological and not for metrical reasons. In the second situation there is no 
intersection at all. 

Step 3: Study of topological properties of the curves. We recall that the 
sense of folding of a critical curve My in the domain is such that det(DF) is positive 
immediately to the left of -y. The computation of -y in step 1 proceeds along the 
sense of folding and we use a binary flag to indicate whether this is the usual positive 
orientation. This is determined by examining a neighborhood of the point whose 
image is a maximum of the x-coordinate (such points have been computed in the 
previous step). 

Computing winding numbers: We explain how to compute the winding number 
of a curve with respect to the origin of the plane. Often, the endpoints of a bimono- 
tonic arc lie in the same or adjacent quadrants: changes to an adjacent quadrant 
add or subtract one quarter of a turn from the winding number in an obvious fash- 
ion. Changes to the opposite quadrant add or subtract half a turn, and to decide 
which is the case, we employ a routine that checks if the origin lies above or below 
the arc. 

Computing turning numbers: Notice that all secant vectors with endpoints in the 
same bimonotonic arc belong to the same quadrant: we associate this quadrant with 
the bimonotonic arc. In particular, secant vectors as mentioned in the definition 
of turning numbers also belong to the quadrant associated with the corresponding 
bimonotonic arc, provided they are entirely contained inside this arc. Computing 
the contribution to the turning number corresponding to going over an extreme 
point at which the curve is smooth is easy: secant vectors for such consecutive arcs 
lie in adjacent quadrants and the contribution to the turning number is plus or 
minus one quarter of a turn. When running past cusps, the argument of the secant 
vector in the definition of the turning number always changes by (plus) half a turn, 
when following the sense of folding. 

By making use of the routine which computes winding numbers of curves around 
points, we obtain the inclusion relations among the critical curves in the domain 
(i.e., which curves lie in the disk bounded by another curve). The same ingredients 
are used to write a routine which decides if a point is in the region bounded by a 
set of critical curves. 
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Step 4: Checking the conditions of Theorem 1.6. During this entire step, 
there is absolutely no numerical analysis involved, only combinatorial manipula- 
tions. We perform sequentially the three kinds of tests associated with the three 
criteria in Theorem 1.6; we recall that the tests are performed in each component 
of R = -2 C.. As soon as one of the tests fails, the program is sent to look 
for additional critical curves in a specified connected component of R. In the pro- 
gram, each component receives the same label as its exterior bounding curve, the 
component at infinity receiving by convention the label -1. 

The first test (checking if signs are coherent) is performed by comparing the 
orientation flag attached to each critical curve in the domain. The second test 
checks the counting relations: ingredients are by now computed. The third test is 
more complicated: we first compute Blank words, then look for positive groupings. 

Let R be a connected component of R; from now on we only consider critical 
curves in the boundary of R and cusps which are relevant inside R. We first 
consider the case R bounded. In this step, we call an arc the part of an image of a 
critical curve between two consecutive intersections, equipped with an orientation 
(both can be chosen), or a full image of a critical curve having no intersections, 
also with an orientation. Thus, each chunk of image of critical curve between two 
intersections gives rise to two arcs with opposite orientations. By taking right turns 
at intersections, we go from an arc to its successor. A cycle is a closed sequence of 
successors. 

Let X = R 2 - F(aR). Clearly, boundaries of connected components of X are 
cycles. Also, a cycle is an exterior boundary of a connected component if and 
only if it is oriented clockwise. We introduce a fictitious cycle at infinity, ordered 
clockwise, so that all connected components of X have an exterior boundary. It is 
easy to check inclusions among cycles by looking at windings; this tells us which 
internal boundaries correspond to a given external boundary. 

For each bounded component of X, we will choose one of the arcs on its exterior 
boundary, the exit arc, to be the one through which the Blank rays will leave. Exit 
arcs are chosen repeating the following procedure until all bounded components of 
X have been taken care of. For each such component, we check if one of the arcs on 
its exterior boundary, when seen with reverse orientation, is part of the boundary 
of either the unbounded component or a bounded component which already has an 
exit arc; this being the case, we assign to this component one such arc as its exit 
arc. Exit arcs are indicated by arrows in Figure 2.4. Thus, starting at any bounded 
component and leaving through the exit arc, we eventually arrive at the unbounded 
component. In particular, we have a notion of depth of a connected component of 
X: the unbounded component has depth 0. 

The Blank rays can now be easily constructed; actually, the only information we 
need about the rays is the combinatorial pattern of their intersections with arcs. 
We start from the deepest connected components of X and proceed to shallower 
components: in a typical inductive step, there are incoming rays constructed at pre- 
vious steps, exiting from deeper components to a connected component of X being 
considered. At this point, we have a list of (incomplete) rays and the sequenced 
list of their intersections with previous exit arcs, together with height indices. To 
each group of rays coming from a given boundary component we add a ray for each 
(relevant) cusp on this cycle. Inside each arc of this cycle, the order of rays in 
a group is determined by previous steps, and, more globally, by the order of arcs 
on the cycle. If the cycle is the external boundary, we must pay attention to the 
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FIGURE 2.4 

position of the exit arc. We force all rays to go out through the exit arc, preserving 
the order of the rays in each group and assigning an arbitrary order to the groups. 
We add a last ray for the connected component itself. This process gives us a full 
description of the combinatorial pattern mentioned above for a system of rays. The 
Blank word for each curve is now obtained simply by following the curve and keep- 
ing track of intersections of rays with its arcs, including the formal intersections at 
cusps. We already noticed that the sign at cusps is always negative; other signs are 
obtained by comparing the orientation of the exit arc with the sense of folding of 
the curve. 

Finally, search for a positive grouping - while potentially time consuming, this 
is very simple in our usual examples. A slight simplification is obtained by ignoring 
rays with no negative labels. This takes care of bounded connected components 
R. The word at infinity, necessary for the unbounded component Ro, is easy to 
construct. 

Step 5: Looking for additional critical curves. It may happen that a con- 
nected component R in R failed some of the previous tests. We search for a critical 
point there as follows. The program looks for two points p and q in R at which 
det(DF) has different signs and such that the segment pq is entirely contained in R 
(equivalently, it intersects no known critical curve). This is necessary to guarantee 
that we actually find a new critical curve. Notice that, in some nasty cases, the 
procedure can be time consuming. 

Suppose R is bounded. Boundary curves of R for which the sign of det(DF) 
immediately to the interior of R is the same as that for the exterior boundary are 
called good and the others, bad. Violation of sign coherence corresponds to the 
existence of a bad curve. In this case, let p' be the point on the bad boundary com- 
ponents with the lowest y-coordinate. Consider the points on the good boundary 
components with y-coordinate smaller or equal than that of p'. Among these, take 
q' to be the closest to p' in the PO norm (the chosen norm substantially simplifies 
the search for the closest point: it is either the intersection of the arc with a straight 
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line passing through p with slope ?1I or one of the extremes of the arc). The points 
p and q are obtained by pulling p' and q' slightly closer to each other along the 
segment p'q'. The case where R is unbounded is similar and left to the reader. 

From now on, we assume that signs in R are coherent. Let p be a random point 
in R. We say that a point p is easy if det(DF)(p) has the same sign as det(DF) 
for points of R near the exterior bounding curve -y (or, if this is the unbounded 
component, the same sign as the topological degree of F). If p is not easy, we can 
pick q simply by finding that point in the boundary of R which lies closest to p 
in the f'? norm and then pulling it slightly closer to p. If p is an easy point, we 
perform a modified Newton method (described below) on the function det(DF) to 
find a new point which is hopefully not easy; this process may be iterated a limited 
number of times before the program either succeeds or gives up the search starting 
from p and tries a new random point. 

The modified Newton method: Given an easy point p, we find an approximation 
u to the gradient of det(DF) on p by computing finite differences. In the line 
through p with the direction of u, we solve for p' the equation for the linearization 
of det(DF): 

det (DF) (p) + u* (p' - p) = -a det (DF) (p). 

The parameter ae is a number between 0 and 1. We then check if p' is still in R. 
Whenever a new critical curve is found, the program repeats the necessary parts 

of steps 2 to 5, until all conditions are satisfied. At this point, the program considers 
the computation of the critical sets to be complete. 

The program accepts a number of parameters, which have been adjusted rather 
empirically. Again, we cannot expect our program (nor any algorithm relying 
strictly on function evaluation) to deal with an arbitrary nice function. Still, our 
experience indicates that the program behaves quite well in many nasty examples 
(see ?4) and appropriately halts if the function is not nice. The robustness of the 
program is largely due to our (prudent) variable-step strategy when computing 
critical curves. 

3. INVERSION OF THE FUNCTION 

At the beginning of the inversion procedure, we have at our disposal all the 
critical curves -yi, i.e., for each one, a list of points together with their images, 
including cusps and intersection points (computed close to machine precision) and 
a collection of flags indicating the following properties of each point: 

i. if a point is a cusp, and if the cusp is inward or outward, 
ii. if the point is a local extremum of the x- or y-coordinate in the lists of -Yi or 

F(-yi) (there are four flags of this kind), 
iii. if a point is an intersection point. 
We are now ready to begin the computation of the solutions of the equation 

(1) ~~~~~F(x) = a, x, a R 2. 

A frequent operation will be the inversion along the segment ab with initial condi- 
tion p, a known pre-image of a. We use an extended Newton's method, as described 
in detail in [1]. There are two ways in which inversion may fail. The segment ab 
could intersect the image of the critical set at a point c, in which case we choose 
to interrupt the inversion procedure, returning a value of c. Else, it is of course 
possible that a numerical error occurs, and the inversion routine then sends back a 
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warning. We actually expect the first kind of 'failure' to occur several times during 
an execution of the program. 

Again, we break the description of the program into steps. 

Step 0: Computing all the pre-images of some simple points. Take a point 
u in the domain just away from the critical set C and such that F(u) is also away 
from F(C) (this is easily accomplished from information collected by flags of type 
(ii)). Join its image F(u) by a horizontal or vertical segment I to a nearby point 
a in one of the diagonals y = x or y = -x. Define the points b, c and d in the 
image to be consecutive right-angle turns of a around the origin. Next, attempt to 
invert along segment I, with initial condition u. Assuming success, we now have 
the first pre-image p of the point a. Use p now as an initial condition for inversion 
along the sides ab, bc, cd and da of the square abcd. Again assuming success, we 
now have another pre-image of the point a. Repeat the cycle of inversions along 
the sides of the square until we obtain the total number of pre-images of a: their 
number is I deg(F) . This procedure is justified by the behavior of F at infinity. If 
any of the inversion procedures fail, we start again with u further from the origin 
(say, twice the distance); again, from the behavior of F at infinity, this method 
must eventually work. Summing up, we now have four points a, b, c and d along 
the diagonals all of whose pre-images are known. Algebraically, we solved system 
(1) for the right-hand side equal to each of these four points. Points all of whose 
pre-images are known will be called solved points. Some of these points will be 
permanently kept for eventual use in a bank of solved points. 

Step 1: Computing the pre-images of an arbitrary point. Let e be a point 
in the range. Join e to one of the solved points a in the bank by an L-shaped path, 
i.e., a path consisting of two segments, one horizontal and one vertical (the order is 
not important) going from a to e. There are many such paths, and we choose one 
by favoring the properties below. 

1. Both segments should stay away from images of cusps (which are points of 
potential difficulty for the inversion procedures) and of local extrema of x- 
and y-coordinates of F(C) (this is requested so that intersections with F(C) 
are transversal). 

2. Both segments should have few intersections with F(C). 
3. Segments should be as short as possible. 

Once a path is chosen, we look for all intersections of critical curves with this 
path, and classify them according to orientation: as the path crosses the image 
of the critical curve, the number of pre-images either increases or decreases by 
two, as we have seen in Proposition 1.2. We now perform an inversion procedure 
starting from the solved point a. We do this for each pre-image of a until we either 
obtain a pre-image of e, or the pre-image of the path approaches a critical curve 
in the domain, thus leading to an inversion failure of the first kind. We also have 
to do inversion starting from those intersections c of the path with F(C) where 
two pre-images appear. We easily compute the point r in C which is sent to c. 
In order to generate the two pre-images near r, compute the kernel K of DF(r), 
and choose two points si and S2 near r in the line r + K, one on each side of the 
critical curve. The images di = F(si) and d2 = F(s2) most certainly do not belong 
to the segment being inverted. We then connect d1 and d2 to the path by small 
straight line segments I, and I2, invert them with the obvious initial conditions, and 
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continue inversion along the original path. Finally, we check that failures happened 
at the right places and in the right amount. Unfortunately, from the information 
we are keeping we do not know a priori which are the two pre-images doomed to 
vanish. 

If this process as a whole is successful, i.e., if the only failures of the inversion 
process correspond to the vanishing of pre-images, it gives us all the pre-images 
of e. A genuine difficulty, however, is that there are cases in which no L-shaped 
path from the point e to be inverted to points in the bank is acceptable in the 
sense of request (1) above. One possibility would be to search for more complicated 
paths joining e to some point in the bank, steering away from dangerous regions 
of inversion. Another possibility is to wait for the bank of solved points to be 
sufficiently rich so as to contain a point which can be joined to e by an acceptable 
L-shaped path. This leads us to the next step. 

Step 2. Collecting solved points. It is convenient to keep a bank, consisting of 
certain points together with their full set of pre-images, initialized with a, b, c and 
d, as in step 0. Occasionally, we will add to this bank a new solved point, inverted 
either by request or for being the corner of the employed L-shaped path. This will 
permit improvements in the choice of subsequent L-shaped paths, thus making more 
points accessible to the inversion procedure. There are many reasonable criteria for 
insertion of a new solved point in the bank but we do not know which is best. 

The computation of the flower is a matter of inverting each point in the lists 
describing F(C). A point is very close to its neighbors in the same curve, so we 
usually have good initial conditions for its inversion but things do not work so nicely 
near a cusp or intersection. We therefore proceed arc by arc, where an arc is that 
portion of one of the curves in F(C) between two such troublesome points. The 
situation for a typical point inside an arc is very simple to handle numerically: all 
pre-images but one are far from the critical set C and the remaining one, which is 
in C, is already known explicitly. We can therefore use our previously discussed 
inversion procedures to compute all the unknown pre-images of one point about 
midway in each arc and then invert the rest of the arc by standard continuation 
methods. Of course, there could be difficulties when the regular pre-images get 
very close to C: a typical example is a small swallowtail, i.e., a pair of very close 
cusps, one inward and one outward, on the same critical curve (cusps v and w in 
Figure 1.1 form a swallowtail). 

4. EXAMPLES 

In this section, we describe several executions of the program. The experiments 
were performed on a Sparc Station SLC (diskless, 8 Mbytes). We begin by consid- 
ering the function 

F(x, y) = (x5 _ 1OX3y2 + 5xy4 + 6x2 + 6xy + x, 5x4y - 10x2y3 + Y5 - y) 

After running through a rather exhaustive grid of 61 x 61 = 3721 points, the pro- 
gram found three critical curves which were traced with 57, 61 and 157 points. 
These curves and their images are shown in Figure 4.1. The program checked 
sign coherence and counting relations and proceeded to compute the Blank words: 
in this example, the regions inside critical curves trivially satisfy the word cri- 
terion. For the unbounded regular region, it obtained the Blank words a-b-cU 
for curve 0, doeU fo for curve 1, b+c+d+e+f +g- hoi-j for curve 2 and the word 
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at infinity b+c+d+e+f+g+h+i+j+a+b+c+d+e+f g? +h+i+j+a+b+c+d+e+f+g+h+- 
i+j+a+b+c+d+ e+f+g+ h+i+ j+a+b+c+d+e+f+g+ h+i+j+a+ (height indices for the 
word at infinity are infinite), which were checked to admit a positive grouping. At 
this point, the critical set was considered to be completely known. This part of 
the program took 4.5 seconds: 1.5 seconds were taken by running over the grid, 
1.4 seconds were spent in the tracing of the critical curves (in a detail finer than 
necessary), the precise computation of the intersection of the images of the critical 
curves took 0.2 seconds and the word test took a further 0.2 seconds. 

We then undertook two experiments to evaluate the performance of the inver- 
sion routines. We computed, with our algorithm, the pre-images of 199 uniformly 
distributed random points in the square [-1, 1] x [-1, 1]. Notice that this square 
contains a nontrivial portion of the image of the critical set: there were points 
with 5, 7 and 9 pre-images. This took the program 14 seconds (plus 2 seconds 
for input and output). The average number of pre-images per point turned out 
to be 5.82. We then took other 199 uniformly distributed random points in the 
square [-6, -4] x [-1, 1], which is quite removed from the image of the critical set. 
The program then computed all five pre-images of each point, from the previously 
known pre-images of the point (-5, 0) by a simple standard continuation method, 
which usually turned out to be equivalent to (a nonextended) Newton's method. 
This part of the program took 2.5 seconds for computations (and 1.6 seconds for 
input and output). We find the 6:1 ratio of required times satisfactory for the 
following reasons. The prototype being tested is far from being optimal and the 
task it performed is substantially harder: a standard continuation method would 
not be able to ensure that the totality of pre-images had been found. Besides, the 
segments appearing in the continuations performed in the first part of the test were 
much closer to the critical set, forcing the predictor-corrector method to be more 
careful and therefore slower even when the segments did not cross the image of the 
critical set. Clearly, a larger number of pre-images is responsible for still additional 
time in the first part of the test. Notice that the program inverted successfully all 
199 random points, despite of their probable closeness to the image of the critical 
set. The total time, including computation of the critical set and the inversion of 
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the 2 x 199 points was 29 seconds, of which 17 seconds were spent in the nearly 
35,000 evaluations of the function and its Jacobian. 

As another experiment, we set a modest square grid of 9 x 9 = 81 points for 
the initial search of critical curves of the same function F defined above. The 
program started by correctly computing the global degree of the function to be 
equal to 5. Then, by running over the grid, it found -y2; four cusps were found 
on this curve and the turning number of its image was computed to be 1. By 
checking the counting restrictions, the program correctly concluded that there were 
critical curves missing in the unbounded component of the complement of 'Y2. By 
the random search method, -yo was found and analyzed: curves were still missing. 
Again, random search found -yl, and all conditions were then shown to be satisfied. 

We now show two examples of use of the program to obtain global understanding 
of a function by means of the computation of its flower F = F-1(F(C)). Consider 
the family of functions 

Ft(x, y) = (t(x4 - 6x2y2 + y4) + x3 + xy2 - 2x, t(4x3y - 4xy3) - x2y 3 - 2y). 

The flowers shown in Figures 4.2 and 4.3 correspond to the values t = 0.15 and 
t = 0.3 respectively. Notice the tiny pre-images of the triangles in the image and 
the presence of a double covering in the restriction of the second function to the 
region P. 

As another experiment, the program inverted some points very near the image 
of the critical set of a function. More precisely, consider the function F(x, y) = 
(X2 _ y2 + X, 2xy - y), with critical set given by the circle centered at the origin 
with radius 1/2. The intersection of the image of the critical set with the positive y- 
semiaxis is given by (0, (3-X) _, (0, 0.294989919892746), which is the image of 
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a fold point. For points A = (0,0.2949899198927) and B = (0,0.2949899198929), 
the inversion led to correct answers: the first point has four pre-images, ai = 
(0.643433123248,1.028318679856), a2=(-1.009458527033,-0.097713820754), a3 = 

(0.183018329423, -0.465310690167) and a4 = (0.183007074333, -0.465294168935), 
and the second point has only two pre-images, which agree with the points a, and 
a2 to all twelve displayed decimal places. Moreover, applying F to the points a, 
and a2, we obtained the points A and B with an error of roughly 10-13: at this 
scale, A and B are undistinguishable. In other words, errors were probably due to 
truncation only. Moreover, a3 and a4 stand on opposite sides of the critical curve: 
their distance to the critical set is of the order of the square root of the distance 
of the points A to the image of the critical set, which is the expected behavior of 
a function close to a fold point. When computing F at a3 and a4, however, we 
missed the point A by an error of the order of 10-11, indicating that full machine 
accuracy was not achieved but relatively good accuracy was in fact obtained. We 
then inverted some points very close to (0.75,0), which is the image of the cusp 
(0.5,0). The inversion worked well for the points (0.75, 10-8), (0.75 + 10-1,0) and 

(0.75 - 10-11,0). 
Our final example is the study of the function F(x, y) = (x29 y2 + 20 sin x, 2xy + 

20 cos y). The critical set of (x, y) |-- (sin x, cos y) is a grid of lines of the form 
x = kir + 2- y = kir, where k is an integer. Due to the quadratic term, F behaves 
at infinity like z l-- z2, in complex notation. In particular, the critical set of F 
is bounded and the topological degree of the function is equal to two. Both C 
and F(C) are given in Figure 4.4: notice the large number of critical curves in the 
domain (seventeen) and the intricate pattern of intersections in the image. In the 
computations for this example, we first estimated a bound for the critical set and 
made use of a very fine initial grid. Indeed, only by doing so could we hope to find 
the two small critical curves at the upper right and left corners in the picture of 



NUMERICAL INVERSION OF FUNCTIONS FROM THE PLANE TO THE PLANE 1551 

o Q o 

(domain) (image) 

FIGURE 4.4 

the domain: they would be undetectable by all tests (recall the examples described 
in Figure 1.5): this is yet another situation where a priori estimates are needed. 
The combinatorics related to the grouping of words is overwhelming, at least for 
this algorithm, due to the many nontrivial Blank words. In this execution, we 
inhibited the word criterion. Still, the program had no difficulty in inverting the 
points (-32,32), (8,32), (-8,16), (8,16) and (-2, 10), which have respectively 2, 
2, 8, 10 and 10 pre-images. The last three points were taken from a region in the 
image particularly crowded with images of critical curves. This function seems to 
be a hard task for any algorithm to compute (or even count) pre-images: indeed, 
how is it going to infer that points inside the tiny lip at the upper left corner of the 
image have four pre-images without spending substantial time scanning the domain 
for critical curves? 

ACKNOWLEDGEMENTS 

The authors thank Ant6nio Castelo and Helio Cortes Lopes for help in dealing 
with computers. We are grateful to the Departamento de Informatica, PUC-Rio, 
which kindly allowed us to use their equipment. This work is supported by CNPq 
and MCT, Brazil. 

REFERENCES 

1. E. L. Allgower and K. Georg, Numerical continuation methods: an introduction, Springer- 
Verlag, New York, 1990. MR 94f:58003 

2. R. Fletcher, Practical methods of optimization, John Wiley and Sons, New York, 1980. MR 
83i:65055a 

3. G. K. Francis and S. F. Troyer, Excellent maps with given folds and cusps, Houston Jr. of 
Math. 3 (1977), 165-192. MR 58:24328 

4. P. E. Gill, W. Murray and M. H. Wright, Practical optimization, Academic Press, New York, 
1981. MR 83d:65195 

5. H. B. Keller, Global homotopies and Newton methods, Recent advances in numerical analysis 
(C. de Boor and G. H. Golub, eds.), Academic Press, New York, 1979, pp. 73-94. MR 
80f:65059 



1552 IACI MALTA, NICOLAU C. SALDANHA, AND CARLOS TOMEI 

6. M. Kubikek and I. Marek, Computational methods in bifurcation theory and dissipative struc- 
tures, Springer-Verlag, New York, 1983. MR 85j:58117 

7. I. Malta, N. C. Saldanha and C. Tomei, Critical sets of proper Whitney functions in the plane 
(to appear) 

8. I. Malta and C. Tomei, Singularities of vector fields arising from one dimensional Riemann 
problems, J. Diff. Eq. 94 (1991), 165-190. MR 93b:35003 

9. J. W. Milnor, Topology from the differentiable viewpoint, University Press of Virginia, 1969. 
MR 37:2239 

10. A. P. Morgan, Solving polynomial systems using continuation for engineering and scientific 
problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1987. MR 91c:00014 

11. V. Poenaru, Extending immersions of the circle (d'apres Samuel Blank), Expose 342, 
Seminaire Bourbaki 1967-68, Benjamin, NY, 1969. 

12. J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. 
Amer. Math. Soc. 236 (1978), 307-314. MR 57:14020 

13. S. F. Troyer, Extending a boundary immersion to the disk with n holes, PhD Dissertation, 
Northeastern Univ., Boston, Mass., 1973 

14. H. Whitney, On singularities of mappings of Euclidean spaces, I: mappings of the plane into 
the plane, Ann. of Math. 62 (1955), 374-410. MR 17:518d 

DEPARTAMENTO DE MATEMAiTICA, PUC-Rio, RUA MARQUES DE SAO VICENTE 225, RIO DE 
JANEIRO 22453-900, BRASIL 

E-mail address: malta~mat .puc-rio .br 

IMPA, ESTR. DONA CASTORINA 110, RIO DE JANEIRO 22460-320, BRASIL 
E-mail address: nicolau~impa.br 

DEPARTAMENTO DE MATEMAiTICA, PUC-Rio, RUA MARQUES DE SAO VICENTE 225, RIO DE 
JANEIRO 22453-900, BRASIL 

E-mail address: tomei~mat .puc-rio .br 


	Cit r182_c184: 


